

Transportation Vibration Induced by Roadway Irregularities

Tony Evans
ATS Consulting
ADC40 Summer Meeting
July 22, 2014

Introduction

 ATS Consulting performed a series of vibration measurements at a radio studio near a recently constructed LRT system

Purpose of measurements

- Determine vibration levels in studios due to vehicles crossing over the track system and other road features
- Determine if the floating slab track (FST) is contributing to the levels in the studios
- Evaluate the effects of vibration mitigation measures
- Determine the need for further mitigation

Introduction

Floating Slab Track

Introduction

- Key conclusions ...
 - Vibration levels exceed criteria (65 VdB) in the studios
 - There seems to be a vibration source from the track system, but there are also sources along 1st St
 - No evidence that FST resonances contribute
 - 4-way stop reduces vibration levels compared to normal traffic

Dashed vertical lines = front wheel on track system

Solid vertical lines = front wheel in intersection

Ambient Vibration

Mitigation

September

- Filling drainage swales (with concrete) between tracks
- Pavement cut (~12 in. deep) along curb line
- Preparatory cuts for future installation of steel plates

October

 Installation of steel plates to smooth path between road and FST (Lanes 1-3)

January

Resilient layer under hand-hole covers in intersection

Mitigation Effects

Studios MMW and 4H Lmax (avg over regions) deltas

	Sept - Jun	Oct - Sept	Jan - Oct	Jan - Jun
MMW deltas	-5.5	2.0	-10.4	-13.9
4H deltas	-4.5	0.0	-5.9	-10.5
Average deltas	-5.0	1.0	-8.2	-12.2

Note: January had lower vibration levels all along 1st St (weather?); data showed slightly greater decrease in intersection than other regions

Spectral Vibration Comparison

Series 1 Test: 21, Lane: 1, Bus, Speed: 20mph, Studio MMW Center

Series 2 Test: 1, Lane: 1, Bus, Speed: 19mph, MMW Center

70

50

200

250

Jun 2013

31.5

20 16 12.5

6.3 -5 -250

Sept 2013

Oct 2013

Jan 2013

Impact Testing

Impact Testing

- Observations based on drop-hammer testing
 - There does not appear to be efficient propagation from impacts to basement walls and supports, other than higher (audible) frequencies
 - Efficient propagation
 - To MMW at 10-12.5(16) Hz
 - To 4A at 10-12.5 Hz
 - To 4H at 10-20 Hz
 - To 3C at 16-20 Hz
 - o MMW
 - Center and under floor approximately same response
 - Column near window does not appear to efficiently receive vibrations

Final Observations and Conclusions

- Criterion exceedance: maximum vibration levels in studios exceed 65 VdB
- Vibration sources: many along 1st St, all lanes (C St as well)
- Studios responding more to road vibrations than basement and outside
 - → building response contributing to higher levels
- Ambient vibration: appears to be about the same before and after track construction

Final Observations and Conclusions

- Vibration propagation
 - Studios efficiently receive road-source vibrations at key low frequencies
 - No evidence of vibrations entering building via pipes
- Mitigation
 - Previous applications appear to be effective
 - Providing additional mitigation
 - Switch intersection to 4-way stop
 - Smooth Road